# Multiple Linear Regression # Importing the dataset dataset = read.csv('worldcricket.csv') dataset=dataset[2:7] # Encoding categorical data # Taking care of missing data dataset$WC.in.India.W.L = ifelse(is.na(dataset$WC.in.India.W.L), ave(dataset$WC.in.India.W.L, FUN = function(x) mean(x, na.rm = TRUE)), dataset$WC.in.India.W.L) # Splitting the dataset into the Training set and Test set # install.packages('caTools') library(caTools) set.seed(123) split = sample.split(dataset$Last.18.Match.Perform.btw.WQ, SplitRatio = 0.8) training_set = subset(dataset, split == TRUE) test_set = subset(dataset, split == FALSE) # Feature Scaling #training_set = scale(training_set) #test_set = scale(test_set) # Fitting Multiple Linear Regression to the Training set regressor = lm(formula = Last.18.Match.Perform.btw.WQ ~ ., data = training_set) summary(regressor) # Predicting the Test set results y_pred = predict(regressor, newdata = test_set) x_pred = predict(regressor, newdata = training_set) A_pred= c(x_pred,y_pred) #Display Bar-chart barplot(A_pred, xlab = "X-axis", ylab = "Y-axis", main ="Bar-Chart") #Display Bar chart with prediction df=read.csv('worldcup_prediction.csv') #install.packages('plotly') library(plotly) library(ggplot2) #Color Bar Chart colormap <- setNames(object = c("lightblue", "yellow", "darkgreen","red","blue","orange","black","green","greenyellow","darkblue"), nm = df$Team) Win_pred=df$Prediction plot_ly(data = df, x = ~Team, y = ~Win_pred, type = "bar", color = ~Team, colors = colormap)